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ABSTRACT

Let X be a real or complex Banach space. We study the Volterra
equation

t
(v) u(t) + | alt - s)Au(s)ds = f(t) (0 <t<T, T >0),
0

where a is a given kernel, A is a bounded or unbounded linear operator
from X to X, and f is a given function with values in X (of particular

1
importance is the case f=-u +a*g, u e X, ge L (0,T;X), * denotes

0 0
the convolution). We establish sufficient conditions involving a, A, f

which insure that solutions of (v) are positive by using certain representation
formulas for solutions of (v). We also discuss the positivity of solutions
of (vl when A is a nonlinear (m-accretive) operator and we discuss several

examples when A is a partial differential operator.

AMS (MOS) Subject Classifications: 45D05, 45N05, 45G99, 45M99, 47HO05,
47H10, 47H15
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1. Introduction and Principal Results.

Let X be areal or complex Banach space. We study the linear Volterra equation
€. X} u(t)*a*Au(t‘) f(t) (=t <T: T >0)
t
where a * Au(t) - f a(t - s)Au(s)ds, a is a given real kernel, A is a bounded or unbounded
linear operator from0 X to X and f 1is a given function with values in X.
An important and perhaps the most useful special case of (1.1) for certain applications

is the linear equation

(1.1a) u(t)+a*Au(t)-uO+a*g(t)‘ (0'< ti< BT >10)

where u, € X and the given function g ¢ Ll(O,T;X). We will establish conditions on the
kernel a and the operator A which insure that the respective solutions operators for (1. 1)
and (1.1a) preserve a convex cone in X (see Theorems 3 and 4). We then consider in
Section 3 a nonlinear problem of the form (1. 1) in which A is a m-accretive operator.
Finally, in Section 4 we discuss three examples to illustrate the theory. Example 3 was
proposed to us by Professor L. A. Peletier. We are grateful to Professor M. G. Crandall for
discussing Example 3 with us.

We will suppose throughout that the following assumptions are satisfied.
(Hl) A :D@A)CX - X and -A generates a linear continuous contraction semi-group on X,
which we shall denote by e—m(u > 0)s
(H,) a e Lo, T:R)

Hy £ Lo, T
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Definition 1. We say that u:[0,T] - X {is a strong solution of (1.1) if u e LI(O,T;X),

1
u(t) ¢« D(A) a.e. on [O0,T], Aue L(0,T:X), and u satisfies (1.1)a.e. on [0,T].

We denote the normin X by [I- |. 1f B is a linear unbounded operator on X, we
use the notation XB =D(B): 1If u e XB’ its graph norm is denoted by [l ”X ”u ” + ”Bu fl.
B
Of particular interest are the spaces XA and X 2 where A satis.les (Hl). Recali that
A

the space X, 1is densein X and X
A AZ
1
Definition 1 states that ue L (O,T:XA).

is dense in XA; see [ 15, Theorem 2.9, pg. 8].
If u is a strong solution of (1.1),

To discuss solutions of (1.1) and (1. la) we make use of the operators R and S defined

respectively by the equations

(R) u(t) + a * Au(t) = a(t)x (x e XA; 0'ct<T)
(S) u(t) + a * Au(t) = x (xeXA:Osth).

It follows that under the assumptions of Theorem 1 below, equations (R) and (S) each have
a unique strong solution which we write respectively as R(t)x and S(t)x. While the
operators R and S are so defined for x e XA, Theorem 1 together with a density argument
shows that R and S can be extended uniquely as bounded operators in LI(O,T;X) and
C(0,T:X) respectively.

Our main resuit {or the linear case is
Theorem 1. Let (Hl), (HZ) be satisfied.

(1) Let the kernel a satisfy the following condition

r_f_‘g every \ >0, the unique solution r(t,\) e LI(O,T;IR) of the scalar equation

(resolvent equation)

(H,)
r(t) + xa * r(t) = a(t) 0<ct<T

\satlsfies rt,\) >0 a.e. on [0,T].

Then for every x e XA, the squation (R) has a unique strong solution which we denote by

R(t)x, 0 <t < T. Moreover, for almost every te [0,T], there exists a positive measure

B, on R‘, depending only on the kernel a, such that




@0

ok
Ritix = [ e xdp(w
0

(1. 2) te [0,T] a.e.

0

a) = [ dp
0

and the following estimates are satisfied:

(1.3) IrRxll < lall Ixl,
L'[o0, T;Y] L0, T;R]
where Y -X or X, or X and
A n
A
(1.4) Ir = vl - < lall | [lv I . lgp g™ .
1[0, 7Y L[o, T;R] L°[ 0, T:Y)

(11) Let the kernel a satisfy the assumptions (H4) and:

-

o

r every \ >0, the unique solution s(t,\) (absolutely continuous en [0,T])

of the scalar equation

H) g s(t) +xa*s(t)=1 (0<t<T)

satisfies s(t,\) >0, 0 <t<T.

\

Then for eve X € XA the equation (S) has a unigue strong solution which we denote

by S(t)x, 0 <t <T. Moreover, for every te (0,T], there exists a probability measure

+
v, on R depending only on the kernel a, such that

t
b
(1.5) Six = [ e xdv (@) (e [0,T]),
0
and the following estimates hold:
1.6) Iswxly < Ixlly ,
(1.7) s * vl o < vl ,
clo,T:y) L1[ 0, T;Y)
where Y=X or X, or X .
A An
Remark 1.1. If a&], then R(t) = S(t) = e'tA and By =V ® the Dirac measure at t.

Assumptions (H4) and (Hs) require some clarification.

Proposition 1. (1) Let (Hz)ggsatisfiedg_rlql_e_t_ ae¢ C(0,T) and af(t) >0. If log a(t) is

=3




convex on (0,T) then (Hq\ is satisfied on [0,T].

(ii) Let (HZ) be satisfied and let a(t) be nonnegative and nonincreasing on (0,T).

Then (H,) is satisfied on 6, T}

While the content of Proposition 1 is implicitly contained in the literature (see {7}, [8], [12]
and [ 14]), we give the proof in Appendix 1. In the literature the results are for t on the
infinite interval and under slightly stronger assumptions.
Remark 1. 2. It is useful to observe that
t
stt,x) =1-r [ r(e,\)do

0
where r and s are defined in (H4) and (Hs) respectively. This follows from the fact that
a*s =1%r togetier with the equa;‘ion defining Ts. Thus if (H4) anodo (HS) are satisfied
on [0,T] forevery T >0 then f r(t,\)dt < f a(t)dt and 0 < f r(t,\)dt < il', x> 0;
in particular, r(t,\) e Ll(0,°°), X >(:). . 3
Remark 1.3. If aft) satisfies (HZ) and is completely monotonic on (0,T), then a

satisfies (H4) and (Hs), see [7], [14].

Remark 1.4. We also note that, if a(t) = et, then (H4) is satisfied but not (Hs). However,

1 if 0<t<l

(HS) does not imply (H4\. To see this, take aft) = {0 € e51l 5

Then by Proposition 1
(i), (H5) is satisfied. But for X =1, as shown by Levin [12; example following
Theorem 1.4], r(l,t) <0 for some l<t< 2.

Theorem | is used to deduce the following results about solutions of equations (1.1) and (1.la).

Theorem 2. (i) Let the assumptions (Hl)’ (Hz), (H4) and g« LI(O,T;XA) be satisfied. Then
the equation
(1.8) u(t) + a * Au(t) = a * g(t) (0<t<T)

has a unique strong solution u given by

1.9) u=R*g,

where R is the solution of equation (R) given by (1. 2), and (by (1. 3))

(1.10) TR T e
L (0, T:X) L(0,T:R) L (0,T:X)

-4-




(i) Let the assumptions (Hl), (HZ), (H4), (Hs) and
Pier o o
e« L7(0,T:X 2) l<pg®™

f=f+f, where f
A

1 1

and fz € ’l(O,T;XA), where WJ’l is the usual Sobolev space,

be satisfied. Then equation (1.1) has a unique strong solution u = Y o+ u, where

(1.11) ul(!) = il(t) - R % Afl(t) a.e. on [0,T] ,
and
(1.12) uz(t) = S(t)fZ(O) b S % f’Z(t) te[O0,T] ,
where S is the solution of equation (S) given by (1. 5); moreover there is a constant
c =¢(T) >0 such that
(1.13) flul <cllg | + e ).
1 ; 1L 2 1
L (0, T;X) L'(0, T;X,) 77(0, T:X)

Remark 2.1. If A is any bounded linear operator, -then X = XA =X 2 and the existence

5

and uniqueness of solutions of (1.1), with only a e Ll(O,T;lR), fe L(0,T;X) is well-known.
In the case when A is not bounded, existence and uniqueness results for solutions of (1.1)
have been obtained by Friedman and Shinbrot [ 9], even for the case A(t) where A(t)
generates an analytic semi-group under different conditions both for the kernel and the func-
tion f with, however, different objectives than ours.
Remark 2.2. Formula (l1.1l) is well-known when A 1{is a bounded operator; formula (1.12)
has also been employed in [8], [9] where S is called a fundamental solution of (1.1).
Remark 2.3. In the unbounded case we may define a weak solution of (1.1) as follows: there
exist sequences (un}, {fn} where each £« Ll(O,T;X) and each u_ 1is a strong
solution of (1.1) with f = fn such that fn - f and Ly in Ll(O,T;X). From (1.13) it
follows that if f ¢ Ll(o,T:XA) 2 W‘l’l(O,T;X), then equation (1.1) possesses a unique weak
solution. (Note that Ll(O,T;X ;) is dense in Ll(O,T;XA) with respect to the norm in
LI(O T:X); similarly f Wl’l(‘:) T:X Wl’l :

s L5R)5 arly fcr M g A) in (0,T:X). A similar remark applies to (1.8).
Remark 2.4. If fl = 0, then conclusion (1.13) can be strengthened to:
(1.14) flu "C(O,T;X) <c ||f2|| W'l’l(o,T;X) .

aba




Remark 2.5. Since the kernel is real, the case when X is a real Banach space can be
treated as a special case of the complex case: If )? = X + iX, the operator
;\(x + 1y) := Ax + 1Ay satisfies (Hl) whenever A satisfies (Hl)' Therefore, we can restrict
ourselves to the complex case.
Remark 2.6. If a(t) = 6§(t) where 6&(t) is the Dirac measure, then (1.1) reduces to
u(t) + Au(t) = f(t), and

00

(1.15) st =a+n)t s [ e
0

B [19; p. 240] .

The kernel a(t) = (>(t)t does not satisfy (HZ). However, 6(t) can be approximated by

kernels a (t) - 'Ule 7 (o —'0+); each a  satisfies (HZ), (H ), (HS) so that af(t) = 6(t)

is a limiting case of our theory and the corresponding measures v:U) approach the measures

4

- +

Ve in (1.15) of density e u, independent of t, as o -0 .
By (1.2) and (1.5), R(t) and S(t) are respectively positive and convex "“combinations"

of contraction semigroups e-wA. From this observation we obtain the following applications

of Theorems 1 and 2 which we state as Theorems 3 and 4.

Theorem 3. Let (Hl)’ (HZ), (H4) be satisfied. Let P be a closed convex cone in X, such

that
(1.16) A2 R PCP forevery 220,
Then

(1.17) R)PC P a.e. on [0,T] .

Moreover, if in equation (1.8) g(t) ¢ P a.e., then the solution u of (1.8) lies in P a.e. on

0,7T). Ifin (1.1) fe LY0,T:X ) and At) ¢ P a.e. on (0,T], then
s A _-=

(1.18) f(t) ¢ u(t) + P a.e. on [0,T] ,

where u |is the (weak) solution of (1.1); in particular, if P is a positive cone in X, the

last statement is equivalent to the "maximum principle"“:

(1.19) u(t) < f(t) a.e. on [0,T] .

-6-




The proof of (1.17) in Theorem 3 is an immediate consequence of formula (1. 2) for the
operator R, together with the standard fact that assumption (1.16) implies that e-QA maps
P into P for every we R+. Having established (1.17), the remaining conclusions of
Theorem 3 follow from the representation formula (1.11).

Remark 3.1. If one studies equation (1.8) in the scalar case, one takes A =X\ >0 to
satisfy (Hl). If (HZ) is satisfied and if P = R’ , then the condition (H‘;) is necessary and
sufficient in order to guarantee that the solution u of (1.8) satisfies wu(t) >0 for every

g > 0. Thus one cannot hopa to improve on condition (H4) in the abstract case.

B

rem 4. Let (Hl), (HZ), (H4), (HS) be satisfied. Let P be a closed convex cone in X

satisfying (1.16). Then

(1. 20) SWPCP for 0<t<T.

(1) Moreover, if u, € P and if g(t) ¢ P a.e. in equation (l.la), then the solution u of (l.la)

lies in P for almost every te [0,T].

(1) Ifin (1.1), fe W"l[o,'r;x] where f(0)¢ P and f'(t)e P a.e. on [0,T], then

the (weak) solution u of (1.1) lies in P for every te [0,T]. (The last assertion holds

for any closed convex set P in X).
(i11) Moreover, if X is a real Hilbert space, and if the function ¢ : X = [0,®] is convex,

lower semicontinuous, proper and satisfies

(1.21) e((I + \A)-lx) < ¢(x) forevery \ >0 andevery xe X,
then
(1.22) @(S(t)x) < ¢(x) for every t ¢ [0,T] and every xe X.

The proof of (1. 20) in Theorem 4 follows from formula (1. 5) for the operator §,
together with the observation that assumption (1.16) implies that e.wA maps P into P
+
for every we¢ R . Then conclusion (i) of Theorem 4 follows from ().9), (1.12) with

f(t) =u and the fact that the operators R and S each map P into P. Similarly,

o’
conclusion (ii) follows from (1.12). To establish (iii) recall that assumption (1. 2l) implies that

¢\(e""Ax; _<_q')‘(x) for every w >0, X >0, xe X,

&=




where ?\ is the Yosida approximation of ¢, [3, Proposition 2.11], Then (1.22) follows

from (1.5), Jensen's inequality and sup q»\(x) ¢(x), [3, Proposition 2.11].
>0

Remark 4.1. Conclusion (il) of Theorem 4 is an abstraction of a result of Levin [ 12; Lemma 1. 3}
in Rl. His result is

"Let a e Ll (0

10c{?2®)s a(t) nonnegative nonincreasing on (0,%), Let

fe C[0,©) be nonnegative and nondecreasing on [0,®). Then the
solution x of the equation
x(t) + a * x(t) = f(t) (0 <t <>
satisfies 0 < x(t) < f(t)".
This result is also an immediate consequence of Proposition 1 (ii) and of the formula
t
x(t) = S)E0) + [ S(t - 0)df(o) .
0
Levin's proof in [12] is different; he improves his result by a smoothing argument which
permits him to remove the assumption fe C[0,%). This is also evident from the preceding
formula.
In Theorem 4 (ii) both assumptions (H4) and (Hs) are used. It is of
interest to note that in the abstract case the assumption 'Hs) (which is satisfied when a
is positive and nonincreasing) is not sufficient to insure that S maps P into P when
condition (1,16) is satisfied. To see this we consider the following example in lRZ.
Let

1 i 0<gt<

(1.23) alt) =
0 if t>1,

and consider for a > 0 the operator Aa defined by

X
(1. 24) Aa = U AaU where
1 0 1 1
= o ks
Aa 7 i e N2
0 1l ta =] 1

wls




For every a >0, the real matrix Aa is symmetric and positive definite. Thus -Aa
generates a contraction semigroup on ‘IRZ, with the usual Euclidean norm. If P is the cone
lRf_ = {(x,y) € IRZ x>0, y>0)}, then itis easily checked that (1 + kAa)-lP <P for every
>0, A\>0, sothat (l.16) is satisfied.

Corresponding to the kernel a defined by (l.23), the function s(t,\) of (HS) is
o g st <l

(1.25) sft, i =¢

e T4 A(t- l)e—)‘(t'l)

RIS Rt il
and clearly (Hs) is satisfied on the interval 0 <t < 2.

We next compute the operator Sa corresponding to Aa. Consider the equation
(1.26) u+a"‘Aau:x, xclRZ.
By setting v = Uu, y = Ux equation (1.26) is transformed to the equivalent diagonal form
(1.27) ¥rsvYa vy,
which by the definition of s(t,\) in (HS) gives thé solution

v (1) s(t, Dy, : s(t, 1)[x, +x,]
v(t) = = = =
vz(t) s(t,1 + a)yz V2 s(t,1 + a)f &, ¥ xz]

Thus the solution of (1.26) is

s(t,l)[xl + xZ] - s(t, 1+ a) -x + xZ]

u(t) = 1
s(t,l)[xl + le + s(t, 1+ a)[-—xl + x2]

and the operator Sa(t) is

s(t, 1) + s(t,1 +a) s(t,1) - s(t,l + a)
d

Sa(t) . 2

s(t,1) - s(t,1 +a) s(t,1) +s(t, 1 +a)
+
To show that (HS) is not sufficient to prove that Sa maps P = RZ into P, itis sufficient

to have s(t,1) - s(t,l +a) <0 for some t >0 and for some o >0. Observe that from (l.25)

-\(t- =Y
(1.28) B8 (1) = e M- - - v for
1<t<2, A\>0. Thus g—i' (1+ ll—o' 1) >0, so that there exists a >0 such that

-9~




s(l + 1lo ,1) = s(1+ l‘%,l + a) <0, which establishes the claim.

We note the above argument also shows that (HS) does not imply that s(t,\) is

completely monotonic in \. (See remarks following Lemma 2.1 below).

~10-




2. Proof of Theorems 1 and 2.

We will prove Theorems 1 and 2 in two main steps. We first consider the case when
A is a bounded opecrator. In this case, by Remarks 2.1 and 2.2, it suffices to prove the
representation formulas (1.2) and (l. 5); for, having these one immediately has the estimates
'(l. 3), (1.4), (1.6), (1.7) as well as the conclusions of Theorem 2. We then consider the
case when A is an unbounded operator as a limiting situation of the bounded case using
the Yosida approximation of A. The case where A is bounded is further divided into twc
parts:

i) scalar case. We require the following preliminary result.

Lemma 2.1. If alt) satisfies assumptions (Hz), (H4), then r(t,\), defined i_g_(H4), is

completely monotonic in X for 0 <X < o for te [0,T] a.e. If moreover a(t) satisfies

(HS)’ then s(t,\), defined in (HB) is completely monotonic in A for 0 <A <® for

every te[0,T].

Proof of Lemma 2.1. We consider the equations

(2.1) r(t,A) + xa *r(t, \) = a(t)

(2.2) s(t,\) + Aa * s(t,\) = 1

of assump{ions (H4) and (HS) respectively with X\ complex rather than X > 0. Let E
denote the spaces LI(O, T:C) or C(0,T;C). Define the operator K :E - E by

Kx(t) = a * x(t) (x ¢« E). K is a bounded linear operator with spectrum o(K) = 0. Thus
for u ¢ E, the function v defined by v(n) = (I + )\K)_lu, A ¢ €, is an entire function

of M\ with values in E. By differentiation and induction one has the formula:

dn

(2.3) (=" <= v(\) = n! K’;v(x), n=0,1,02,.
dx

where the operator Kx is defined by

(2.4) K, = K(I + T

We claim that

-ll-




t
(2.5) Kx(t) = [ ot - s,\x(s)ds  (x « E) .
0

To prove (2.5) take the convolution product of both sides of (2.1) by x ¢ LI(O, T;C),
obtaining

r(t, N) * x(t) + Aa * r(t, \) * x(t) = a * x(t) .
Thus uk(t) = r(t,\) * x(t) satisfies the equation

”x(t) +Aa *u (t) = a *x(t) ;

A

by uniqueness of solutions of this scalar equation and by the definition of Kx in (2.4)

this shows that ux(t) = Kxx(t) and proves (2.5).

For X\ >0, assumption (Hq) implies that the operators K, map the set of non-

A

negative real functions in E into itself. To prove the first assertion of Lemma 2.1,

consider va(x) = (X% XK)_la; then va(x)(t) = r(t,\) a.e. in [0,T], r(t,r\) >0 by (H4),
n

and by (2.3), (2.5) (-l)n —a';r(t, A\) >0 a.e.in [0,T] for 0 <X < . To prove the

oA

second assertion of Lemma 2.1, take v, (\) = (I + )\A)-ll; then v(\)(t) = s(t,\) >0 by

X
(HS)’ and complete the proof as above. This completes the proof of Lemma 2.1.

It should be noted that the second assertion of Lemma 2.1 is stated by Friedman [ 8,
lemma 2.7] under only the hypothesis that a >0 and nunincreasing. However, his
proof also uses (H4). (He should also require (H4) for his Theorem 5.2, p. 144). To see
that (HS) is not sufficient for the complete monotonicity of s(t,\) with respect to \,
we consider again the kernel a defined in (1.23). The corresponding function s(t,\) is
given by (1.25) and s(t,\) >0, for 0 <t <2. However, as seen from (l.28),

1

ds ikl
d)‘(l+ m,l)>0.

We shall next obtain representations of the entire functions r(t,\), s(t,\) for
Rex > 0.
By Lemma 2.1 and Bernstein's theorem [ 18], there exists a positive finite measure

+
B, on R such that

2=




[ o]
f e-“)‘dut(u) (Rex >0;t e [0, T] a.e.)
0

r(t,\)

(2.6)

f dpfw) (tc[0,T] ace.) .
0

a(t)

Similarly, using s(0,\) = 1, there exists a probability measure v, on lR+ such that
=4 A

(2.7) s(t,\) = [ e dv () (Rex 20;t < [0,T]).
0

Thus (2.6) and (2.7) correspond to formulas (1.2) and (1.5).in the scalar case.

(11) A is a bounded operator satisfying (Hl)' By a standard argument equations (R) and (S)

possess for every x ¢ X a unique solution which we denote by R(t)x and S(t)x respec-
tively. We first prove the representation formulas (1.2) and (1. 5) for the opera’ >rs Ae
defined by

(2.8) A€=eI+A (1>e>0).

Define the operators Re and St: by the formulas

(2.9) R (t)x = j; {: e(t, NN - AE)-lxdx 0<t<T)),
€

(2.10) Sc(t)x = z:—w é s(t, \)(NI - As)'lxdx (0 <t <T),
€

where x ¢ X, r(t,)\), s(t,\) are defined by (2.1) and (2.2) respectively for \ ¢ C. Cc is

a closed contour in the complex \ plane, oriented counterclockwise, consisting of a

finite number of rectifiable Jordan arcs and such that Ce - BUE, where Ue is an open

set containing the spectrum of Ae' The integral in (2.9), (2.10) are the usual Dunford
integrals [19, p. 225]. It is shown by Friedman [8, Theorem 3.1] that Sc(t)x defined

by (2.10) is the unique solution of equation (S) with A replaced by Ae' An entirely
analogous argument shows that Re(t)x defined by (2.9) is the unique solution of equation (R)

with A replaced by Ac'
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We next observe that the spectrum U(Ac) is contained in the half plane Re \ > g,
and, if ¢ <1, in the ball of radius 1 + lAll. Thus we may choose Cc to be the rectangle
bounded by the segments joining the points (‘2‘ -i(2+ lIally, «2 + Ialha - 1)),

((2 + ”A")(l +1)), (% +i(2 + ”A")) oriented counterclockwise. Using the representation

(2.6) in (2.9) under assumption (Hq) and the representation (2.7) in (2.10) under assumptions

(54), (HS) we obtain

00 -uAe

(2.11) R (t)x = { e “xdplw) (xeX),
© -wA

(2.12) 5, (t)x = { Py dv (@) (xeX) .

The proofs of (2.11), (2.12) follow from a theorem on the¢ Dunford integral [19, p. 226],
-wA
together with Fubini's theorem and the definition of the operator e & by

i 1 -wh -1
& ‘2= ls (A= A) xdh  (x < X) .

C
€

Thus formulas (2.11), (2.12) establish (1.2) and (1. 5) respectively with A = Ac’ We next
let & - 0+. We first show that
" sk 1
(2.13) R (t)x = 2(t) = f «™% dp,(w) in L(0,T:X; .
0
We then show that z(t) is the unique solution of equation (R). Substituting (2.8) in (2.1l)
we have
@ [ <}
IR (% - [ e™“Pxap(ll = IS (7% - ne™“Pap ()] .
€ t t
0 0
Therefore, by a simple application of Lebesgue's dominated convergence theorem
" ol
1im “R(t)x-f e “xdu(wll =0 a.e.on [o,T] .
¢ _.°+ € 0 t

A
Moreover, since e “" is a contraction semigroup, we have

-14-



(2.14) "Rc(t)x” ff ”e-cwe-wa “dpt(u)g Ixlla(t) a.e.
0

Since a ¢ Ll(O, T), another application of Lebesgue's theorem establishes (2.13).
We next show that the function 2z defined in (2.13) is the unique solution of equat:
We know that Rc(t)x is the unique solution of the equation

(Rc) uc(t) +a* Auc(t) + ga * ue(t) = alt) a.e.

Observe that by (2.14)

0
ba < lxl [ atwar
L(0, T;X) 0

Consequently ¢€a *uc - 0 in Ll(O,T;X) as ¢ -0+. Since u, =2 in Ll(O‘T;X) as

€ -~ 0+, one has that z(t) satisfies equation (R) a.e. on [0,T]. By uniqueness,

z(t) = R(t)x, establishing (1.2). An entirely similar argument with Ll(O, T;X) replaced by
C(0,T;X) and assuming (HS) establishes (l.5).

A an unbounded operator satisfying (H,). Using the assumptions (H})' (HZ), (H,) we define

1 4

the operator R by the relation

o0
(2.15) R(t)x = f e-wa dpt(w) (x € X),
0

for those t € [0, T] for which pt(w) is defined, and define i(t)x = 0 (x ¢ X) otherwise.

Similarly, using assumptions (Hl)' (HZ)’ (H (HS) we define the operator § by the relatior

O
% 0
(2.16) Syx = [ e Pk dv (@) (x<X), te[o,T] .
0

The measures By and ve in (2.15) and (2.16) are defined in (2.6) and (2.7) respectively.

~

We point out that the operators R and S will be identified with the operators R and S

~ ~

of Theorem | after Lemma 2. 5 below. By (Hl) and elementary semigroup theory R and S

are bounded operators in X, X,, and X 2 we have the estimates:
A
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(2.17) IRex Il <a@lixl (¢« [0,T); x € X)
and also
(2.18) Isx Il < Ixll (t e [0,T]; x € X) .
Define
(RS VAR (Y

and the Yosida approximation P\ of A by
Lo s
N \

recall that by (Hl) IX is a contraction on X for every X\ >0 and that, see [19; Cor. 2,
p. 241) where the notation i3 different,

(2.19) I\x = I)‘Ax = Alxx (x € XA) 7

~

We also need to define the operators f\ and §)‘ respectiv.ely by the relations

(2. 20) R (t)x = f e x dpt(w) (x >0),

for those t ¢ {0,T] for which pt(m) is defined and 'ﬁx(t)x = 0 (x € X) otherwise, and
(2.21) S, (t)x = {)’ e xdv(w (A>0,tc[0,T], x<X).

Since A\ is a bounded operator for every \ >0, it follows from tfniqueness in the bounded
case and from part (ii) that ?&(t)x = R\(t)x for te [0,T] a.e. and x € X, where

Rk(t)x is the unique solution of equation (R) with A replaced by A\ Similarly,

§)‘(t)x = S)‘(t)x for t«[0,T] and x ¢ X, where Sx(t)x is the unique solution of
equation (S) with A replaced by A)‘. We shall use the following properties of the operators
RR,S .

lemma 2.2. Let (H), (H,), (H,) be satisfied. Let R and F\ be defined by (2.15) and

(2.20) respectively. Then

(2.22) Reetdo,m® e,
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(2.23) 11m+ll'§x-f<xll : =0 (x¢X.
A ~0 LYo, T:%)

1
Moreover, if v ¢ L'(0,T;X), then as a function of s

(2.249) i(t - s)v(s) ¢ LI(O,T;X) (te[0,T] a.e.),
' ~ 1

(2.25) ™ J R(t - s)v(s)ds = R * v(t) « L'(0, T:X) ,
0

(2.26) Hm+”§*v—-§ vl | =00,
A0 X L'(C, T;X)

Finally, if Yo ¥ in L](O,T;X) as \ - 0+, then

(2.27) lim "i fy o= R *v I =0
1
K0 & M 1. (0, T;X)

Lemma 2.3. Let (H), (H,), (H,), (H,) be satisfied. Let S and 's'x be defined by (2. 16)

and (2.21) respectively. Then properties (2.22) - (2.27) hold with R replaced by s and

~

7\ replaced by §, .
Remark 2.4. In Lemmas 2.2 and 2.3 the space X can be replaced by XA or XAZ without
changing the proof. Also if v, N Lp(O, T;X), p > 1, then the properties (2.24) - (2.27)
hold in Lp(O,T;X). Moreover, in Lemma 2.3 one can replace Ll(O, T;X) by C([0,T]:X)
in the formulas corresponding to (2.22), (2.23), (2.25) - (2.27).

We only give the proof of Lemma 2. 2.

First (2.22) is immediate from (2.17) by integration. To prove (2.23) we observe from
(2. 20) that
(2.28) IR, (xl <alixl  (x «Xivelo,T]) .
Next, we show

(2.29) ix(t)x *a(t)x (n - 0*: xeX;tel|O,T] a.e.).

~ By semigroup theory, [19],
e u‘\x - e-wa (x - °+)

+
uniformly in « on compact subsets of R, and so (2.28) holds by Lebesgue's dominated

convergence theorem. Thus (2.23) follows from (2.28), (2.29), (HZ)' and Lebesgue's
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dominated convergence theorem. By (2.22) i(t - s)v(s), as a function of (s,t), 1is measur-
able for 0 <s <t <T with values in X. By (2.28) one has

(2. 30) ”EX(t - s)v(s)ll <a(t - s)llvs)ll ’

where by (}12) a(t - s)”v(s)” € Ll(O, T;]R+) for te[0,T] a.e. Thus one obtains (2.24)
by letting X\ - 0+ and by applying Lebesgue's dominated convergence theorem in (2. 30).
To prove (2.25) and (2.26) we integrate (2. 30) obtaining
T T
f f ”R\(t - s)v(s)"dsdtif a(t)dtllvll 1
00 0 L(0, T;X)
Therefore, (2.25) follows from Fatou's lemma and (2. 26) follows by again applying Lebesgue's
theorem. Finally, writing
R‘v-ﬁx*vx =(i*v-ﬁx*v)+(§x*v~i\*vx),
and using arguments similar to those employed above one obtains (2.27). This completes
the proof of Lemma 2. 2.
We next establish the uniqueness of solutions of (1.1) when A is an unbounded
operator satisfying (Hl)'
Lemma 2.5. Let (Hl)’ (HZ), (Hq) be satisfied and let u e Ll(O, T;XA) be a strong solution
of the equation

u+a*Au=0.

Proof of Lemma 2.5. For any X\ >0 we have from the given equation and from (2.19) that
Iku +a* Axu =0,
or equivalently
* = - >
u+a Axu u I\u
By using the fact that I\ is a bounded operator, together with the representation formula

~

(1.11) where A is replaced by ‘\’ fl is replaced by u - ]xu, and R is replaced by R\,
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and the uniqueness of solutions of (1.1) in the bounded case, we obtain

(2.31) u=u-!xu-Rx*Ax(u-Ixu),

where Fl\ is defined by (2.20). We wish to show that u - J\u and Ax(u - J)‘u) each

). We have

tend to zerc as \ —~ o' in LI(O, T;X) for u e LI(O,'I‘;XA

T T T
[ lu-g1ular = £ xla ullwar<x [ lauliwade,
N \
0 0 0
which tends to zero as \ — 0+. Also

le\(u = boul i(t) = IIAxxAxu l(t) = HKA\I)‘VH(t) ’

where v = Au; thus

"A)‘(u - I\u) l(t) = ||])\v - ]x(va) ) < v - I)‘v"(t) ;

But
v -3, vl < 2llvlin) = 2lla lt) « o, ;
moreover,

ftv - va”(t) -0 a.e.on [0,T],

+
and therefore, by Lebesgue's theorem, A)‘(u - Ixu) -0 as A -0 in Ll(O, T;X) for

u e Ll(O, T;XA). Letting \ - 0* in (2. 31) and using the above facts together with (2.27) of
Lemma 2.2, we obtain u = 0. This completes the proof of Lemma 2.5.

We will complete the proof of Theorems | and 2 by first noting that Lemma 2. 5 establishes
the uniGgueness assertions in Theorems 1 and 2. To prove Theorem 1, part (i), we shall prove

~

that R(t)x is a solution of equation (R) for ¥ ¢ XA' We know that a, ® E\(t)x defined
by (2.20) is the unique solution of the approximating equation associated with (R):

(2.32) ux*"*Axux:amx (Of_tf_T;X(XA).

By Lemma 2.2 and Remark 2.4

~ +
(2.33) ux—«uzkx in Ll(O,T;XA) as AN -0 |
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where R is defined by (2.15). Thus to pass to the limit in equation (2. 32) as X - 0+, it
suffices to show that

+
A - Au in L’(O,T;X) as A\ -0 .

X

But A u_ = AJ\u

¥ thus it suffices to show that J u_ - u in LI(O,T;XA) as \ -0*.

%" %%
This is equivalent to showing that

1 +
2,\34 = - - i 0 ;X ~ f
(2,34) M u o= u -Tu =0 in L(0,TiX,) as \ =0
But

T T ‘B
f "Axu\(s) llas = f ”I)‘Au)‘(s)"ds 5{ HAu\(s)“ds < ”u)‘” <M,

1
0 0 L'(0, TiX)

where M >0 is constant and where the last inequality follows from (2.33). This proves

~

(2.34) and shows that R(t)x is a solution of equation ‘R) for x ¢ XA and for 0. <t<T. By
the uniqueness result of Lemma 2. 5 we identify E(t)x with R(t)x of Theorem 1 and thereby
prove (1.2). The a priori estimates (1. 3), (1.4) follow from Lemma 2.2 and Remark 2.4. This
completes the proof of Theorem 1 (i).

The proof of Theorem 1 (ii), is similar using the approximating equation associated

with (S):

ux+a*Axu)‘=x,

where u\ = gx(t)r defined by (2.21), and Lemma 2.3. This completes the proof of Theorem 1.

To prove Theorem 2 (i) it is sufficient, by Lemmas 2.2 and 2.5, to show that u = R * g
is a strong solution of (1.8). To do this we consider the approximating equation associated
with (1.8):

1
(2. 35) u, ta " Axu)‘ =a*%g (gelkL (O,T;XA)) .

We already know, since Ax is a bounded operator, that u)‘ = ix * g 1is the unique solu-
tion of (2. 35), and by Lemma 2.2 and Remark 2.4
1 +
ux-’u=R"‘g in L(O,T;XA) as A\ -0 .
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One completes the proof of Theorem 2(i) by letting X\ - 0+ in (2.35) and by observing as
before that I\ux -~ Au in Ll(o, T;X) as \ - 0+. The estimate (1.10) follows immediately
from its validity for ux = ﬁ)\ * g, together with Lemma 2, 2.

Tg prove Theorem 2(ii) we consider the approximating equation acsociated with (1.1):

* =
(2.36) ux +a A\u)\ £

We first take f = f in (H

N ). Since l\ is bounded

o . e R =
L R e

is the unique solution of (2. 3¢) wit . - (l' We have that ulx € Ll(o, T;XA) and by

6

Lemma 2.2 and Remark 2.4

1
— = f R % i :
u, U, fl R Afl i L (0T

+
) as X -0 .
+
As above, Kulx - Aul in Ll(O,T;X) as \ - 0+. Thus letting X - 0 in (2.36) and
using Lemma 2.5, shows that u, given by (1.11) is a strong solution of (1.1).
We next take f = fz in (Hb)’ and we obtain (l1.12) by a completely analogous argument.

The estimate (1.13) follows from formulas (1.11), (1.12), together with the estimates (1. 4),

(1.6), (1.7). This completes the proof of Theorem 2.
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3. A a Nonlinear Operator-

In this section we give a nonlinear analogue of Theorems 3 and 4. Let X be a real
Banach space and let PC X be aclosed convex cone. Let A :D(A)C X - Zx be a given,
possibly multivalued, m-accretive operator [ 6; p. 139] satisfying the condition
(3.1) 1+ xA)“'Pg_ P (A>0).

Let a satisfy (HZ) and (H4) and let f satisfy (H3)‘ Consider the equation

(3.2) u(t) + a * Au(t) > {(t) te[O,T],

where T >0. We say that u e L'(o, T;X) is a solution of (3.2) on [0, T] if there exists
w € Ll(O,T;X), where w(t) ¢ Au(t) a.e., such that u(t) +a * w(t) = f(t) a.e. for

t« |0, T].

Theorem 5. Let (H)), (H4) be satisfied. Let f satisfying (H3) be such that

2
for every \ >0, v, the unique solution of the linear equation

(H7) (3.3) v(t) +xa *v(t) = £(t) te[O0,T] a.e.,

satisfies v(t) ¢ P a.e. on [0,T].
For every X\ >0 let uy be the unique solution of the eguation
* = i
(3.4) u, () +a*Au (t) = {(t)  t<[0,T] a.e.,

where A\ is the Yosida approximation of A. If (3.1) iz satisfied, then u\(t) ¢ P a.e. on

[0, T]. Moreover, if u {s a solution of equation (3.2) such that u = weak lim u_ in
A—0

LI(O,T;X), then u(t) ¢« P a.e. on [0,T].

Remark 5.1. Under the assumptions of Theorem 5 it follows from Theorems 3 and 4 with A = \1
that if f{t) = a * g(t), g ¢ Ll(O,T;X), then (H7) is satisfied if g(t) ¢ P a.e. on [0, T].

If f(t) =u, +a*g(t), where u, ¢« P and g is as above, then (H,) is satisfied provided

0 0 7

that (HS) holds. 1If f e Wl’ l(0, T;X), then (H7) is satisfied provided that (HS) holds, and
that f(0) ¢« P and f'(t) ¢ P a.e. on [0, T].

Remark 5.2. If A 1is linear and satisfies (Hl)’ equation (3.2) is (1.1); it was shown in
section 2 that the unique solution u A of (3.4) converges to u, the unique solution of (1.1),

under the assumptions of Theorem 2.
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Remark 5.3. If X = H areal Hilbert space and if A = d¢, where ¢ : H « (o, ] js5

convex, l.s.c. and proper, Barbu [1] and Londen [13] establish the existence and unique-
ness of the solution u of equation (3.2) as a limit of solutions o of equation (3.4),
that Theorem 5 can be applied to such a nonlinear equation. A generalization to the case

when A is a maximal monotone operator on H is carried out by Gripenberg fH). It

should be noted that in the existence theory of (1], [11], and [13] a(0) >0 and finte i:
+

essential, while in Theorem 5 a (0 ) = +o is permitted.

Proof of Theorem 5. Consider the equation (3.4) written in the equivalent form

1 1
-— * - — <
(3.5) u)‘+\a u, f+)a"‘]xu\.

Define f\ € Ll(O, T;X) to be the unique solution of (3.3) with \ replaced by ;1 By (H.)
{

fx(t) « ¥ a.e.on [0,T]. Itis easily checked using

t i
qt, ) + 4 [ at - o)ro,L)do = a(t) and £(1) = (1) - 2 [ ot -0, dy(o)do
N 0 \ A N 0 A
that equation (3. 5) is equivalent to the equation
3.6 = F
( ) u, }X(U)‘) )
where
jiad 1

(3.7) F(2)(t) = ,g Kt = 0, 1)J, (2)(o)do + 1, (1) .

1
Observe that f‘)\ maps L (0, T;X) into itself. We prove that some iterate of FX s a
strict contraction in Ll(O, T;X). Indeed, from (3.7), (HZ) and the contraction property of
])‘ (recall A is m-accretive) one has

t
(3.8) IF, () - £, (@l < ;‘ { it = 8, ;‘)Illum - wtmilds

Define b)‘(t) = fr(t, '!) and b:(t) = b * bx (RO bx(t), where the convolution is

taken n times. Iterating (3.8) n times we obtain
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(3.9) e w)t) - ER)@ I <b™ * flu - vll ;
I\ \ A Ll(o,'l‘;X)

t n
For any fixed X\ choose n, so large that f bx\(”)dn = K\ <l then integrating (3.9)
0

we obtain

(3.10) [lF

n\ n
ORI <K lu-vll
L' (0, T;X) L'(0, T;X)
Thus (3. 6) (and by the equivalence also (3.4)) has a unique solution u - Ll(O, T;X) given by

u. = lim F:(u ¢ LYo, T:x) .

" ), for any u
n->w

0 0

In particular if uo(t) ¢ P a.e.on [0,T] andif assumptions (H,) and (IL‘) are satisfied,

4

then by (3.1) and (3.7) F)‘(uo)(t) ¢ P a.e. on [0,T] and the same holds for Fn( )(t)

x o
for every n. Consequently the unique solution of (3.4) u)\(t) ¢P a.e.on [0,T]. This
completes the proof of Theorem 5.

Remark 5.4. From the proof of Theorem 5 it is clear that Theorem 5 provides an alternative,
and in fact simpler, treatment of Theorems 3 and 4 in the linear case. However, in the
linear case Theorems 1 and 2 provide explicit representations for the operators R and S
and hence more information about the solution. Moreover, the method of proof of Theorem 5
can be used to analyse more general situations. For example, let X be the product of n
Banach spaces Xl, XZ’ . .,Xn, and interpret equation (3.2) as a system of n equations
with u(t), f(t) ¢ X for te [0, T] and the kernel a beinga n Xn matrix satisfying
(HZ) componentwise, and such the associated matrix resolvent r(t,\) >0 componentwise
(analogue of (H4)). Let P be a closed convex cone in X and let A be a m-accretive
operator on X for a suitable norm satisfying (3.1). If f satisfies (H3) and (H_]), then
the conclusions of Theorem 5 hold.

Remark 5.5. The proof of Theorem 5 is in the same spirit as the proof of Theorem 1 of Weis [17]

for the equation

t
x(t) = £(t) + [ a(t - s)a(s, x(s))ds
0
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where x, f, g have values in Rr" and a isa nXn matrix ¢ L:OC(O,ao) and where g
has ''separated structure'' in the sense that g(t, x) = col(g‘(t, xi)), i=1,...,n, where each
gi is locally Lipschitz with respect to xi uniformly for t bounded. Weiss gives a condi-
tion which corresponds to (H4) and (H7) which insures that the solutior x(t) >0 for as

long as it exists.
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4. Examples.

Example 1. This example is an application of Theorem 5. Consider the equation

(4.1) u(t, %) + a * (=v2u(t, x) + plu(t, x)) 2 1£(t, x) ,

0 <t <o, x ¢ N, abounded open setin Rn with smooth boundary I’ with u satisfying
Dirichlet boundary conditions on I'. P is a maximal monotone graph on R X R with

0 « B(0). For simplicity we assume that the kernel a is completely monotonic on [0, ©);
thus (see Remark I.3) assumptions (Hz), (H4), (HS) are satisfied on [0,T] for every T > 0.
We assume f ¢ Wi;xz: (0,;X), X = LZ('.?). To see that equation (4.1) is a particular case

of (3. 2) define

(4.2)  Au=-V%u +plu) with D(A) = {ue W 2@) N w:)’ 2.9) : pu) « L3(0)} .

As is known, see Brezis [4], A is the subdifferential of the convex, l.s.c., proper
function ¢ : LZ(Q) -~ (-», +w] defined by

2l f(gfad u)zdx +{2)‘(u)dx if ue W:)’ Z(Q), j(u) e LI(Q)
o(u) =

t o otherwise ,
where j is the unique, convex, l.s.c., proper function mapping R into (-%,+®] such
that j(0) = 0 and P = 8j. Thus A is maximal monotone on the Hilbert space LZ(Q)
and hence A is m-accretive. Thus (4.1) with the boundary condition u =0 on I is a
particular case of (3.2). Let f ¢ Wi;i(o,oo;x); in particular, f e C[0,o;X) and f(0)
is well defined as an element of LZ(Q). We assume that f(0) ¢ Wi)' 2(Q) and
{7j(f(0))dx <o, These assumptions on f imply that (H3), (H6) are satisfied. It is now
easily checked that all the assumptions Londen [ 13; Theorem 1] or Barbu [1, Theorem 1]
are satisfied and therefore, (4.1) possesses a unique solution u on [0,T] for every

T > 0 in the sense of the definition given following equation (3.2) above. Moreover,

u= lim + Yy in LI(O,T;X) (even in LZ(O,T;X)) for every T >0, where uy is the
A-0

-26-




unique solution of the approximating equation (3.4). We shall apply Theorem 5 with

P = Li(n). It is well known that the operator A defined by (4.2) satisfies condition (3.1).
Therefore, 1f we require that condition (H7) is satisfied - this will be the case. For example,
if f(0) ¢ P and f'(t) ¢ P a.e. on [0,®) (see Remark 5.1), then the solution wu(t) of

(4.1) is nonnegative a.e. on (0, o).

Example 2. This example is an application of Theorem 4 (iii). Let @ be a bounded open
set in R" with smooth boundary ' On Q2 we consider the linear second order

differential operator

n
2] ou v 9
=S¥ 4+ s +
ax.  ij 8x4) 2’ X, (aiu) il
) i i=1 i

. 9a;
cC>0, C+Z &—20 a.e.,
i

i

and for some positive constant o

& 2 -
L a_§.§.za|§| a.e., Ele R .
el

We define D(A) = WZ’2

(2) N W:)’ Z(Q). It is known (see [ 5]) that A satisfies ‘Hl) with
X = LZ(Q). Consider the equation

(4.3) u(t) +a * Au(t) = By b [o,T],

where ug ¢ LZ(Q) and where a satisfies assumptions (HZ)’ (H4), (HS) on [0,T].
Equation (4. 3) has a unique weak solution u (see Remark 2.3); moreover, if ug ¢ D(A),
then the solution u 1is strong. Let j be a convex l.s.c. proper function: R - [0,x]

with 0 ¢ 8j(0), and we fix j(0) = 0. Define ¢ :X = [0,o] by

[iwax it j(v) « L)
Q
#(v) =

+ 00 otherwise .
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Then by [ 5, Lemma 2] we have (Axx,y) >0 forevery [x,y] € 8¢ and for all \ > 0.
Moreover, by [3; Theorem 4.4] (l.21) is satisfied. Consequently, by Theorem 4(iif), if
(ug) « L'(2), one has

Jitu)xdx < [ jug)x)dx,  te[o,T] .

Q Q
In particular, if j(u) = lulp, 1 < p <o, one obtains
(4.4) (MEOY <ol
LP(o) LP(a)

if u0 € Lp(Q). Note that the case p = ®© can be obtained by passing to the limit. Inequality
(4. 4) can be obtained directly from Theorem l, inequality (1.6), if one uses the known that

A satisfies (Hl) with X = Lp(Q), l<p<w see[5; Theorem 8 and remarks preceding].
Example 3. This example is an application of the linear theory developed in Theorems 1-4

to a nonlinear problem. Let 2 be a bounded open set in Rn with smooth boundary I'. Let
y : R—-R, y(0) = 0, y continuous and nondecreasing. Assume that the nonlinear elliptic

equaton

(4.5) -v2u = y(w), ul. =0

has a nontrivial, positive solution e Lm(Q). Let a satisfy (HZ), (H4), (H5)’ for every
T >0 and conside the nonlinear integral equation

u(t) +a* (Vi - Wu)t) = u, (0 <t<w),
(4.6) -

uotL (), u=0 on I,

Let Au = -Vzu with D(A) = {u ¢ w:)'z(n) n WZ’Z(Q)). Let X = LZ(Q). Then A satisfies
(Hl)' If u is a solution of (4.6) in the sense that g = y(u) ¢ Lm(o,oo;x) and u is a weak
solution (in the sense of Remark 2. 3) of the equation

u(t) + a *Au(t) = u, +a *g(t), te[O0,T] a.e., VT>O0,

0
then by Theorem 2 it is easily shown that u satisfies the nonlinear functional equation

(4.7) u(t) = F (u)(t) (0<t<w),
Yo
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where

(4.8) FuO(u)(t) = S(t)uo + R * y{u)(t) .

We prove the following result about solutions of (4.7), (4.8).

Theorem €. Let (H.), (H4), (Hs)ggsatisficd for every T > 0. For every Uy ¢ X satisfying

2

0< g L4 the equation (4.7), (4.8) has a positive maximal solution a5 Lw(O, 0 ;X)

0
e
Q
=
~
>
o
=
=
=
8
it
[=)
8
<
o
5

and a positive minimal solution e L (0,%;X)

solution of (4.7), (4.8), then

(4.9) Of_um(t)fu(t)gu t)guw a.e. on (0,) .

M’
Remark 6.1. If u e Lw(o,w;x) is a solution of (4.7), (4.8), then it is easily checked that

u is a solution of (4. 6) in the sense defined above. Note that if the solution u ¢ Lm(_o,cr i X)
satisfies the estimate (4.9), then wu ¢ Lw(O,w;Lw(Q)), and thus y(u) € Lw(O,x;X), as
well as  y(u) ¢ Ll(O,T;X) for every T > 0. These observations are needed for the definition
of weak solution.

Remark 6.2. Theorem € also holds if the requirement y nondecreasing is replaced ¢u + y(u)
nondecreasing for some p > 0. To see this replace -Vzu by -72u + pu and replace

y(u) by pu+ y(u) in (4.5), (4.6) and apply the above analysis.

Remark 6.3. Comparing equations (4.1) of Example 1 and (4. 6) and taking f(t) = u_ in (4.1),

0
ug ¢ Li(ﬂ) we note that if P is single valued and continuous, equations (4.1) and (4. 6)
differ only by the sign of the nonlinearity. For equation (4.1) one has existence and uniqueness

2
of solutions on (0,®) for every u_ ¢ L+(Q). By contrast, for equation (4.6) it is known

0
that if equation (4.5) has u = 0 as the only nonnegative solution, then equation (4. 6) can

have a positive solution only on a finite interval (0,T). For example, if n =3 and

y(u) = us, it follows from [16, Remark 3.27] that if © is star shaped, then (4.5) has u = 0
as the only nonnegative solution. Taking a(t) =1, applying [10, Theorem 2.¢ and Remark 2.7],

and assuming that u, >0 and that

0
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‘f) up(Reg(x)dx 224 |

where \0 is the smallest eigenvalue and the corresponding unique eigenfunction ¢0 >0 in 9
-V/z¢ =\ %, in 2, ¢ =0
0 070 ) r !

then the unique nonnegative solution u of (4.6) exists only on a finite interval.

Proof of Theorem 6. Let E = L”(o,w;x) with the usual ordering (i.e. u,v ¢ E,

~

u<v<=> G(t,x) = ;(t,x) a.e. in (t,x) ¢ (0,0) X2, where u and v are elements of
the equivalence classes u and v respectively). In E let I denote the interval [o, um]
in the sense of order in E. It can be shown that I is a complete lattice with respect to

this ordering. For every Uy ¢ 1 we define the function ;u by
0

F, (u)0) = S(thuy + R * Yu)()

(\]
where
) it wsllu Il
5 L (@)
¥u) =
flu | otherwise ,
0 o0
L (@)
in place of the function Fu defined by (4.8). Then Eu satisfies
0 0
(4.10) P ool
Yo
and
(4.11) ¥ is monotone (u,vel and u<v =>;‘ (u) 5;‘ (v)) .
Yo Yo Yo

Let u ¢ 1. Then, by Theorems 3 and 4, Fu (u) >0. Moreover, by the fact that
0

u, = Suw 4+ R * y(uw), we have

?’uo(u) 2 Su0 +R* ;(u) < Suo + R * y(uw) = S(uo - uw) tu, <u_: which proves (4.10).
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~

Clearly, (4.11) is evident from Theorem 3. By [2, Theorem ll, p. 115], the operator F,
0

a least and a greatest fixed point in 1, which correspond respectively to the solutions

< < % = = =
and uye since U <uy Su and therefore, y(um) y(um), y(uM) y(uM), and so

F = ( F - i :
Fuo(um) Fuo‘um)’ Fuo(uM) F‘uo(uM). This completes the proof of Theorem €.
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Appendix |

An assumption which has been used frequently in the literature concerning the kernel a is

a(t) « C(0,T), a(t) >0, t « (0,T), and

A
( l) ;(ﬁtﬁ}o—) nonincreasing as a function of t for each
0>0, 0<t+o0<T,
see Friedman [ 7], Levin [12], Miller [14]. We shall prove that condition (Al) is equivalent

to the condition

(Az) a(t) « C(0,T), a(t) >0 te(0,T) and log a(t) convex on (0,7T) .

Moreover, we first prove a preliminary result.

Lemma |. Let assumption (AZ) be satisfied. Then for every v >0, there exists a function
a satisfying (AZ) and a ¢ CIIO,T], and av(t) ta(t) as v ¢ 0+ for t e (0, T).
Proof. Define b: R = (-w,+o] by

log a(t) if te (0,T)

b(0) = lim+ log a(t), b(T) = lim _ log a(t)

L t=0 t=T

+0 if t¢[0,T].

Observe that a(t) >0 on (0,T) and the definition of convexity of log a(t) on (0, 7T)

+ -
excludes a(0 ) = 0 and a(T ) = 0. Thus b is convex, l.s.c. and proper on IR. Define
b, v >0, to be the Yosida approximation of b; then, see [ 3; Proposition 2.11],

b (t) = min (L ,y-t12+b<Y)}: te IR,
v ZV
ye<R

and bv € Cl(IR'), bL satisfies a Lipschitz condition on R with constant v‘l; moreover
b

bv(t) t b(t) as v ! 0+, t ¢ IR. Define a =e and the result follows. This completes the
proof of Lemma 1. Using Lemma | we shall prove
Lemma 2. The conditions (Al) and (Az) are equivalent.

Proof. That (Al) => (AZ) follows from

ad _, altir) (0O<t<t+o, t+T<t+o+71<T);

a(t+o)za(t+7+c)
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using a(t) > 0 and putting ¢ = T we obtain
a(t)a(t + 27) > az(t ),

Thus putting t1 = t, tz =t + 27 we have

ll +it ’ ) \
log a[ 2 25 log a(tl) s log a(tz) .

We note that in [ 12; calculation fcllowing Theorem 1. 3] it is only shown that (Al) => a(t)
convex, with the additional assumption that a is nonincreasing, which is not used. Of
course, log a(t) convex implies a(t) convex.

To prove that (A.) => (A

2 ), it is sufficient by Lemma | to prove (A)) => (Al) with the

1 2

additional assumption a ¢ C'[0,T]. Then log a(t) convex implies

() ] +
al(t) alt+o) et et by 2T) .

a(t) — a(t +o)

Using a(t) >0 we then have

d _at) _ aft+o)a't) - a'(t+oa(t)
dt a(t 4 o) =

)

2
a (t+o)
which completes the proof of Lemma 2.

Proof of Proposition 1. By Lemma 2 it is sufficient to prove Proposition 1(i) under assumptions

(Al) and (HZ). If, in addition, a ¢ C[0,T], Proposition 1(i) follows directly frc a [14,
Theorem 1] with h = f = a and g(x,t) = x.

Let a satisfy assumptions (Al) and (HZ). Consider the functions a, of Lemma 1.
Then by the above remark, the functions rv(t,x) >0, te[0,T], forevery x>0, v >0,
where rv(t,x) is the resolvent kemel associated with xav(t). The functions a, converge
to a in Ll(O,T) as v i 0+, since av(t) t a(t) as v 0+ and a ¢ Ll(O,T). Therefore,
it is easily checked that the functions rv(-,x) converge to r(-,\) in LI(O, T), where
r(t,\) is the resolvent kernel corresponding to \a(t), and r(t,A\) >0 on [0,T] a.e. This

completes the proof of part (i).
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Part (1i) is proved in [ 8; Lemma 2. 5] with h = \a (see also [12; Lemma I. 3] with
f& 1), where the proof is carried out on (0,%); this can be applied by extending a(t)

as a constant on [T,w). This completes the proof of Proposition 1.
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